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Abstract

There are three pathways for triacylglycerol (TAG) biosynthesis: De novo TAG bio-

synthesis, phosphatidylcholine-derived biosynthesis, and cytosolic TAG biosynthesis.

Variability in fatty acid composition is mainly associated with phosphatidylcholine-

derived TAG pathway. Mobilization of TAG-formed through cytosolic pathway into

lipid droplets is yet unknown. There are multiple regulatory checkpoints starting from

acetyl-CoA carboxylase to the lipid droplet biogenesis in TAG biosynthesis. Although

a primary metabolism, only a few species synthesize oil in seeds for storage, and less

than 10 species are commercially exploited. To meet out the growing demand for oil,

diversifying into newer sources is the only choice left. The present review highlights

the potential strategies targeting species like Azadirachta, Callophyllum, Madhuca,

Moringa, Pongamia, Ricinus, and Simarouba, which are not being used for eating but are

otherwise high yielding (ranging from 1.5 to 20 tons per hectare) with seeds having a

high oil content (40–60%). Additionally, understanding the toxin biosynthesis in Ricinus

and Simarouba would be useful in developing toxin-free oil plants. Realization of the

importance of cell cultures as “oil factories” is not too far into the future and would

soon be a commercially viable option for producing oils in vitro, round the clock.

Highlight

• Newer alternative sources like cell cultures and high yielding (nonedible) species

with high oil content are commercially viable targets to engineer in producing

edible-grade oil using the omics tool.

K E YWORD S

acetyl-CoA carboxylase, cytosolic TAG biosynthesis, de novo TAG biosynthesis, gene
regulation, lipid droplet, next generation sequencing, oilseed, phosphatidylcholine derived
pathway, triacylglycerol

1 | INTRODUCTION

Seeds are sink tissues containing nutritional reserves such as carbohy-

drates (as starch or hemicellulose), proteins, and fats or oils

(in different proportions). They are utilized during the germination

Abbreviations: ACCase, acetyl-CoA carboxylase; DGAT, diacylglycerol acyltransferase; LD,

lipid droplet; PC, phosphatidylcholine; WRI, wrinkled.
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process for initial establishment and growth of a plant. Of the three

types of reserves, carbon density of fats and oils are nearly double

when compared with carbohydrates (Lüttge, 2013). Due to their

energy-dense nature, the construction cost of fats and oils is the

highest among the three reserves, and nearly double the cost of car-

bohydrate construction. Carbon in its organic form is essential for all

the energy storage and transfer processes (Mooney, 1972). It is these

sink tissues, seeds of cereals or pulses or oilseeds, that act as the

seeds of nutrition and source of energy for most of the global popula-

tion (Heiser, 1990; Smil, 2017). In short, humans domesticated the

present-day crops, and through culturing these crops, humans trav-

eled the path of civilization. Roughly, 30% of the calorie requirements

(through dietary intake) is contributed through fats and oils

(Mustafa & Iqbal, 2021).

Plant oils or vegetable oils are energy-rich long chain hydrocar-

bons and provide maximal calorie equivalents compared with carbo-

hydrates or proteins. There is an upsurge in the demand for vegetable

oils due to their both edible and nonedible applications including bio-

fuel and other industrial applications that have caused increase in

prices of vegetable oils (Lu et al., 2011), and a balance between the

demand and supply would stabilize the oil economy. Alternative

newer sources of plants or crops to add to the oil market are thus a

dire need to cater to the growing demand. Additionally, for edible pur-

poses, a few nonedible (due to presence of certain alkaloids or com-

pounds) seed oil plants could be modified appropriately using precise

gen(om)e editing tools to make them edible types. The present review

gives an overview of oil biosynthesis with potential newer plant oil

sources and strategies to make them edible by removing their non-

edibility factors, genetically.

2 | TRIACYLGLYCEROL BIOSYNTHESIS—
AN OVERVIEW

Seeds are the major storage organs of plant lipids (oils). Their oils con-

tribute to 60–80% of the seeds’ dry weight (Ohlrogge &

Browse, 1995; Voelker & Kinney, 2001). Triacylglyceride (TAG) bio-

synthetic pathway is comparatively conserved but varies depending

on the species (in the last few steps of the TAG biosynthesis) and

common to most of the plant tissues. However, there is a large diver-

sity among species regarding the acyl chain length and the degree and

position of unsaturation. These diverse factors stabilize the oil across

time and temperature (Voelker & Kinney, 2001). There are three major

pathways for lipid biosynthesis, namely, de novo TAG biosynthesis,

phosphatidylcholine (PC)-derived TAG biosynthesis, and cytosolic

TAG biosynthesis. Of the three pathways, de novo and cytosolic path-

ways are acyl-CoA-dependent whereas the PC-derived pathway is

acyl-CoA-independent (Bates & Browse, 2012; Dahlqvist et al., 2000;

Lu et al., 2009; Ohlrogge & Browse, 1995; Saha et al., 2006; Weselake

et al., 2009). The chloroplast (in non-green tissues, chromo- or leuco-

plasts) is the major organelle that synthesizes fatty acids (FAs) and

transports them to endoplasmic reticulum (ER) where TAG formation

occurs (Domínguez & Cejudo, 2021; Hölzl & Dörmann, 2019;

Lüttge, 2013). The formed TAGs accumulate between the bilayered

phospholipid membrane of the ER, thereby forming a lipid lens. This

further grows and forms into a mature lipid droplet (LD) consisting of

TAGs within the phospholipid monolayer that buds off from the ER

into the cytoplasm and is known as oil bodies or oleosomes or

spherosomes, which generally range in the sizes of 0.5 to 2.0 μm but

can be up to 20 μm (Chapman et al., 2019, 2012; Lüttge, 2013; Pyc

et al., 2017; Siloto et al., 2006). In a similar fashion to lipid biosynthe-

sis pathway, LD biogenesis is conserved across most organisms, while

the proteins like SEIPIN and oleosins vary specifically at the species

level, and are associated mainly with the size of the LD (Cai

et al., 2015; Chapman et al., 2019, 2012; Pyc et al., 2017; Siloto

et al., 2006). However, nonseed LDs are oleosin-independent

(Chapman et al., 2012; Siloto et al., 2006).

De novo TAG biosynthesis, also known as the Kennedy pathway,

was illustrated in 1961 (Kennedy, 1961), with step-wise evidence

reported earlier, and constitutes the formation of TAGs from

glycerophosphate (Weiss et al., 1960; Weiss & Kennedy, 1956). There

are numerous studies that describe de novo TAG biosynthesis

(Bates & Browse, 2012; Lu et al., 2011; Ohlrogge & Browse, 1995;

Weselake et al., 2009). In brief, they can be grouped into three steps,

namely, FA synthesis in plastids, acyl-CoA pool formation in the cyto-

sol, and TAG formation in ER that consequently forms as LDs in cyto-

sol (Figure 1). FA synthesis in plastid is initiated through the

conversion of acetyl-CoA to malonyl-CoA through acetyl-CoA carbox-

ylase (ACCase) and in a series of steps, free FAs are formed (for

details, please refer the green-shaded portion of Figure 1). Formed

free FAs are then converted into their acyl-CoA pools in the cytosol

through the catalytic action of long-chain acyl-CoA synthetases

(LCAS). In the third group of steps, the acyl-CoA pools are transported

to the ER and upon acylation of glycerol-3-phosphate at the first and

second positions form phosphatidic acid (PA). Dephosphorylation of

PA through phosphatase enzyme forms diacylglycerol (DAG) which is

converted to TAG (for details, please refer the brown-shaded portion

of Figure 1). This third group of steps within the de novo TAG biosyn-

thesis is referred to as the Kennedy pathway (Bates & Browse, 2012;

Kennedy, 1961).

Besides de novo TAG biosynthesis, TAGs are also formed through

the formation of DAG from PC, a membrane lipid, and this alternate

route is known as PC-derived or acyl-CoA-independent TAG biosyn-

thesis (Bates & Browse, 2012; Dahlqvist et al., 2000; Lu et al., 2009).

The oleoyl-CoA (18:1) after being incorporated in phosphatidylcholine

(PC) undergoes polyunsaturation to form 18:2 and 18:3 through the

catalytic action of FAD2 and FAD3 desaturases in the ER (Stymne &

Appelqvist, 1978). This PC-derived route diversifies the lipid biosyn-

thesis through various enzymatic reactions like hydroxylation,

epoxylation, and acetylation on PC and hence modified PC is involved

in the formation of DAGs (Lu et al., 2009 and citations thereof). Inter-

conversion between two molecules of DAG and monoacylglycerol

(MAG) + TAG does occur through transacylation reaction in an acyl-

CoA-independent manner (Stobart et al., 1997).

For TAG biosynthesis, in addition to the two pathways, de novo

(acyl-CoA-dependent) and PC-derived (acyl-CoA-independent), both
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accomplishing in the plastid and the ER, a third route (acyl-CoA-

dependent) in the cytosol is reported (Saha et al., 2006). The cytosolic

route differs from the de novo TAG biosynthesis in the third group of

steps (TAG formation in ER). The first two groups of steps of the de

novo TAG biosynthesis, FA synthesis in plastids and acyl-CoA pool

formation in the cytosol are common. In the cytosolic route,

lysophosphatidic acid (LPA) is formed from the glycerol-3phosphate in

cytosol, and the formed LPA is converted to MAG through the cata-

lytic action of cytosolic LPA phosphatase (Shekar et al., 2002). The

enzyme MAG acyltransferase catalyzes the conversion of MAG to

DAG, utilizing acyl-CoA (Tumaney et al., 2001). The final conversion

of DAG to TAG is catalyzed through the cytosolic DAG

acyltransferase (DGAT), utilizing acyl-CoA (Saha et al., 2006). We call

this cytosolic (also acyl-CoA-dependent, like the de novo pathway)

TAG biosynthesis pathway as the “Rajasekharan pathway.” Evidence

for the cytosolic LD biogenesis of the TAG molecules synthesized in

the cytosol, which requires the phospholipid monolayer and the LD-

associated proteins—oleosins, caleosins, and steroleosins (Chapman

et al., 2019, 2012), is unknown.

3 | REGULATION OF TAG BIOSYNTHESIS

The TAG biosynthesis pathway is regulated in the steps involved in

the conversion point of photosynthates (glucose, sucrose, and their

derivatives) to FA, and also in the steps between FA and TAG forma-

tion (Guschina et al., 2014; Zhai et al., 2021). The regulatory mecha-

nisms can be grouped into key factors such as transcriptional and

post-translational factors. Metabolites, hormones, long noncoding

RNAs (lncRNA), miRNAs, and stress are the key interactive factors

that modulate TAG formation (Batsale et al., 2021; Coleman &

Lee, 2004). In addition, LD biogenesis is also regulated dynamically

through the LD-associated proteins (Chapman et al., 2019; Gidda

et al., 2016; Pagac et al., 2016; Shi et al., 2013). ACCase is identified

as playing a key regulatory role in TAG biosynthesis (Post-

Beittenmiller et al., 1992; Weselake et al., 2009), although it is regu-

lated through the presence of 2-oxoglutarate (Zhai et al., 2021). Modi-

fications of FA through hydroxylation, epoxylation and acetylation

process comes at the cost of nearly 50% reduction of the quantum in

de novo TAG biosynthesis and are regulated by ACCase (Bates

et al., 2014). Recent updates on the TAG biosynthesis regulation are

detailed here.

Key transcription factors Wrinkled1 (WRI1), Leafy cotyledon

(LEC1 and 2), abscisic acid insensitive (ABI3) are known to regulate

TAG biosynthesis (Lu et al., 2011; Weselake et al., 2009). Regulation

of TAG biosynthesis at the transcriptional level is mediated through

three transcription factors: GmZF392, GmZF351, and GmNFYA (Lu

et al., 2021). Trehalose-6-phosphate is reported to act as a signal mol-

ecule for SnRK1 to phosphorylate the transcription factor WRI1 for

downstream regulatory process and also regulate DGAT1, associated

in TAG biosynthesis (Guschina et al., 2014; Lu et al., 2011; Zhai

et al., 2021). WRI1 and 2 regulate the genes and their products that

are involved in the FA synthesis part of TAG biosynthesis (Behera

et al., 2021; Focks & Benning, 1998). In addition to phosphorylation-

mediated regulation of DGAT1 post-transcriptionally, miRNA-

mediated regulation of the transcripts of DGAT1 is regulated in

F I GU R E 1 De novo and cytosolic triacylglycerol biosynthesis
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multiple ways (SnRK1, miRNA, and phosphorylation of the DGAT1

itself) for the conversion of DAG to TAG (Wang et al., 2021;

Weselake et al., 2009; Zhai et al., 2021; Zhang et al., 2021). Recent

reports underscore the importance of lncRNA (Chen et al., 2021), and

miRNA (Wang et al., 2021) in regulating the genes associated with

TAG biosynthesis.

4 | UNUSUAL FAs

The five FAs palmitic (16:0), stearic (18:0), oleic (18:1), linoleic

(18:2), and linolenic (18:3) are the most common ones constituting

more than 90% of the acyl chains found in the TAG and membrane

lipids (Cahoon & Li-Beisson, 2020; Ohlrogge & Browse, 1995;

Voelker & Kinney, 2001). Besides, there are unusual FAs (uFA, more

than 450) specific to a certain group of plants and are mostly lim-

ited to seed TAGs and are likely to be associated with speciation

events and therefore species-specific (Cahoon & Li-Beisson, 2020).

uFAs are FAs containing either less than 16 or more than 18 carbon

atoms, or odd-numbered FAs, or with variable double bond posi-

tions other than that of the common FAs, or modifications of the

FAs (mFAs) through hydroxylation, epoxylation, acetylation, and

other similar reactions (Cahoon & Li-Beisson, 2020; Diedrich &

Henschel, 1990; Lu et al., 2009; Takagi & Itabashi, 1982; van de

Loo et al., 2018; Voelker & Kinney, 2001). In castor, nearly 90% of

the unsaturated FA are constituted with hydroxylated FA (18:1-OH)

with the oil content up to 50% by weight (Mubofu, 2016). Hydrox-

ylation events in transgenic Arabidopsis is reported to inhibit (nearly

50%) the de novo TAG biosynthesis. However, when regulated

through ACCase (Bates et al., 2014; Bates & Browse, 2011), as

accomplished by the researchers, the inhibition was overcome. This

suggests that the regulatory mechanism of ACCase genes from a

different species are very different, underscoring the importance

of sequence associated post-translational modifications in TAG

pathway regulation.

Members of Araceae, Lauraceae, Lythraceae, and Ulmaceae are

known to contain acyl chains of less than 16 carbon atoms, and

Brassicaceae, Cruciferae, Fagaceae, Bignoniaceae, and Sapindaceae

of Angiospermae and most of the families of the Gymnospermae

produces FAs with more than 18 carbon atoms (Smith, 1971;

Takagi & Itabashi, 1982; Voelker & Kinney, 2001). Gymnospermae

members are also known for their unusual double bond positions

(Takagi & Itabashi, 1982). Although rare in plants, members of

Poaceae (Lolium perenne), Sterculiaceae (Sterculia foetida, Sterculia

alata), Bignoniaceae (Cuspidaria pterocarpa), Malvaceae (Hybiscus

syriacus), Santalaceae (Acanthosyris spinescens), and Sapindaceae

(Euphoria longans) are reported to contain odd number of carbon

atoms (C13 to C31) in the FAs (Body & Hansen, 1978; Diedrich &

Henschel, 1990; Smith, 1971). Due to the specific nature of uFAs,

they are associated with functional relevance like toxicity or

indigestibility to protect the seeds from herbivory and is generally

found in the seeds of the families Apiaceae, Araliaceae and

Garryaceae (van de Loo et al., 2018).

5 | NONEDIBILITY FACTORS IN OILSEED
PLANTS

Castor (Ricinus communis) is one of the promising nonedible oilseed

crops with nearly 50% oil content by weight of the seed

(Mubofu, 2016), and with a potential yield of 2.0 tons per hectare

(NMOOP, 2018). Presence of toxic components like ricin, hemaggluti-

nin, Ric C1 and C3, and ricinine are reported in castor (Liu et al., 2021;

Lord et al., 1994; Waller et al., 1965; Youle & Huang, 1978). Similarly,

tree-of-paradise or aceituno (Simarouba glauca) is another promising

source for oil with 60–70% oil content (Govindaraju et al., 2009; Rout

et al., 2014) and with a potential yield of around 5.0 tons per hectare

(Joshi & Hiremath, 2000). Although the seeds contain quassinoids

(Govindaraju et al., 2009; Monseur & Motte, 1983; Osagie-Eweka

et al., 2021), a toxic compound of the triterpene family, the oil is

reported to be free of toxic compounds and is edible (Lewy-van

Séveren, 1953). However, the seed meal would still contain the toxic

compound after oil extraction and needs detoxification treatments for

secondary uses.

6 | OMIC TOOLS TO GENERATE NEWER
ALTERNATIVE SOURCES FOR EDIBLE OIL

There are more than 20 species available as the sources for edible oil-

seeds (Table 1). However, oil from only seven species (soybean, rape-

seed, cotton, sunflower, peanut, oil palm, and copra) contributes to

more than 95% of the world production and market (Vinnichek

et al., 2019). The major reasons for only seven of the 20 species being

used as a source of edible oil are one or more of the following: Lesser

oil content, shorter shelf life, not widely accepted across different

regions though edible like drumstick (Tsaknis et al., 1999) and

aceituno (Lewy-van Séveren, 1953). Consequently, enriching and

diversifying the seed oil sources with wider consumer acceptability

would potentially help meet the growing oil demand. Species with

more than 50% seed oil content and fruit yields above one ton per

hectare would be the most promising newer alternative sources for

edible oil (Table 1, Callophyllum, Madhuca, Pongamia, Azadirachta) if

we could succeed in modifying the desired plant using genetic engi-

neering technologies. Reports indicate the possibility of overcoming

the post-translational regulation issues through using a set of key

TAG biosynthetic genes than a single desired gene (Bates et al., 2014).

However, for those species that produce toxins or other undesirable

compounds (Table 1, Ricinus, Simarouba, Pongamia, Azadirachta), dif-

ferent set of strategies are required.

Although a few of the toxins present in the seeds do not get

extracted along with the oil during the extraction process, they will

still be present in the seed meal in higher concentrations (30–60%

depending on the oil content). This requires scientific interventions to

develop methods that would neutralize or detoxify the toxic compo-

nents for further utilization. To overcome, the available and affordable

breeding or biotechnological tools could potentially be used to

develop plants that are free from toxicity (Auld et al., 2001; Sujatha
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et al., 2008). For this, the first step is to understand the biosynthesis

and key regulatory checkpoints of the toxic components, in addition

to the TAG biosynthesis. Transcriptional repression or activation for

these regulatory check points or enhancing the transcriptional levels

of the genes of the oil biosynthesis would lead to enhanced oil pro-

duction. Wrinkled1 (WRI1) is one of the key transcriptional factors

regulating FA biosynthesis in plants (Table S1) (Kong et al., 2020). In

oilseed plants, WRI1 is the most studied TF, followed by Leafy cotyle-

don (LEC), Abscisic acid insensitive (ABI), and bZIP TFs documented

to regulate FA biosynthesis (Table S1). Also, RNAi or CRISPR-

mediated gen(om)e editing tools to block the pathway of toxin pro-

duction would yield promising results.

7 | CONCLUSION AND FUTURE
PERSPECTIVES

With the advent of next-generation sequencing technology and

associated development in the computational tools, the cost of

sequencing has become significantly less and affordable to gener-

ate a high quality genome sequence (Guo, 2021). With reference

to seed oil producing plants, most of the species are sequenced at

the whole genome level or, at the least, at the transcriptome level,

to understand the oil biosynthetic pathways (Table S1). Despite

being the primary metabolic pathway, TAG biosynthesis is regu-

lated at multiple levels with multiple checkpoints; starting from

ACCase to the LD biogenesis, the final step is well known (Bates

et al., 2014; Chapman et al., 2019; Chen et al., 2021; Li

et al., 2017; Lu et al., 2009, 2021; Weselake et al., 2009; Zhai

et al., 2021). On the other hand, the biosynthetic pathway for the

toxins or the components in the seed or the oil that makes them

not preferred by consumers is comparatively less understood and

requires more attention and research. Understanding the toxins’ or

the nonpreferred metabolites’ pathways will help modulate plants

that are free of toxins or nonpreferred metabolites and more

oilseed species of nonedible type could be converted to edible

type. Most of these nonedible oilseed species have potential yields

much higher than the commonly cultivated oilseed crops with

yields less than a ton per hectare. However, when the nonedible

oilseed species are suitably converted, this would give a higher oil

yield (and edible too) and would fetch larger returns. This will help

diversify the plant sources of oil for eating and other industrial

purposes.

Of the three TAG biosynthesis pathways known in plants, de

novo biosynthesis or the Kennedy pathway, PC-derived biosynthe-

sis, and cytosolic biosynthesis or the Rajasekharan pathway the

first two pathways exhibit variability in the pathway between

phosphatidic acid and TAG only, causing modified FA in the DAG

and thereby leading to the diversity in oil composition while the

LD biogenesis is common for both the pathways. Here, except the

PC-derived biosynthesis, which is acyl-CoA-independent, others are

acyl-CoA-dependent. In the case of cytosolic biosynthesis, the

pathway leading to TAG formation is different and occurs in theT
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cytosol. Not much is known about LD biogenesis for the TAG mol-

ecules formed through the cytosolic pathway. How it is mobilized

into the phospholipid monolayer and the assembly of LD with its

associated proteins (LDAP) in the cytosol, for the cytosol derived

TAG, require scientific insights.

Understanding the gene regulatory networks in plants that pro-

duce oil in the endosperm (Reynolds et al., 2019) might help define

strategies to synthesize oil in the endosperm of the cereal crops

and other crops where the endosperm is chlorophyllous in nature

(Rangan, 2020, and citations thereof). Utilizing the strengths of

endosperm-specific callus cell cultures could be a commercially

viable option in the near future with successful demonstration

of developing cell cultures producing TAG (Carmona-Rojas

et al., 2021).
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